Archive | Photo Booth Core RSS for this section

DMP Photo Booth 1.0

Well, the day has come and gone. DMP Photo Booth’s final test on June 21st went off without issue, and DMP Photo Booth has left Beta and is now considered “production ready”. The initial 1.0 release can be found on GitHub.

The significance of June 21st is the very reason DMP Photo Booth was created; the 21st is the day of my wedding. My wife wanted a photo booth for the reception. We looked into renting a photo booth, but it turns out that they run around $1,000. I turned to open source. Some quick googling turned up some options, but they were all personal projects or out of date. Sure I could get somebody else’s project working, but what’s the fun in that? I decided that we didn’t need to rent one, or download one, I could build it!

In late 2013, I set to work in earnest. I had a couple of months of downtime in school, and since I’m not currently working it was the perfect time. I decided I had three main objectives for this project: get some arduino experience, get some GTK+ experience, and do this all as portably as possible. I had initially decided to mostly ignore GLib and focus on GTK, but slowly I grew to appreciate GLib for what it is: the standard library that C never had. First I used GModule to handle shared libraries in a portable manner. Next I decided to use GLib primitives to keep from having to deal with cross-platform type wonkiness. Next, having grown tired of dealing with return codes, I refactored the project to use GLib’s exception replacement: GError.

Lessons Learned

It’s not all roses and puppies though. There are certainly things I’d do differently. DMP Photo Booth is developed in an Object Oriented style, passing opaque structs with “method” functions that operate on them. Each component of the program are organized into their own source file with file scoped globals scattered throughout. Said globals are protected by mutexes to create a semblance of thread safety. That said, threading issues have been a major thorn in my side. Long story short: I regret this design choice. While I still feel that this is the correct way to structure C code, and that if globals are required, this is the correct way to handle them; I feel that I should have made more of an effort to limit side effects. Recently, I’ve spent some time doing functional programming, and if I could do it again I’d try to write in a more functional style. Fortunately for me, this is something that a little refactoring could help with.

Additionally, one thing I thought would be a major help is something that began to be a major thorn in my side: NetBeans. As the size of the project grew, NetBeans got slower and slower. It seemed that I spent more time fiddling with IDE settings than actually coding. Even worse is that the IDE-generated makefile is so convoluted that it’s extremely difficult to modify by hand in a satisfying way. I’ve always coded with and IDE so I wouldn’t have even considered not using one, but then I spent some time with Haskell. One of Haskell’s “problems” is that it doesn’t have good IDE support. It doesn’t seem like any IDE really handles it well, so most people use Emacs. Personally, I haven’t really warmed up to Emacs, but GEdit has syntax highlighting for Haskell and a built-in terminal for GHCI. GEdit also has syntax highlighting for C. Next time, I will seriously consider using a lighter-weight text editor for a C project. All this said, I think NetBeans for Java remains the way to go.

What’s Next

Like any program, version 1.0 is just one of many versions. There certainly remains a lot of work to do with DMP Photo Booth. Some major items you are likely to see whenever I get around to working on DMP Photo Booth some more:

Options Dialog

I think anybody who has seen it will agree: the options dialog in DMP Photo Booth is bad. It’s poorly organized, and kind of wonky. Personally, I modify settings using the .rc file, which is telling. This is certainly a high-priority improvement.

Functional Refactor

Like I said above, the code could use a pass to limit side effects. Funtions need to have their side effects limited, and globals need to be eliminated unless absolutely necessary. However, C is not a functional language. While one could argue that function pointers enable functional programming in C, this is a very pedantic argument. I won’t be going crazy with functional programming techniques. There will be no Monads, or for loops being turned into mappings of function pointers.

Optional Module API

An idea I’ve had on the back burner for a while is an optional module API. This would be used for very specific quality-of-life things. For instance, a module could provide a GTK widget to be shown in the options dialog. Any module that doesn’t want to implement any or all of the optional API can just ignore it. The module loading function will gracefully handle the dlsym failure, just treating it as it is: declining to implement the API. I have no plans to change the current existing API, so all you module developers can rest easy!

User Interface Module

It occurred to me that it might be good to have a UI module. This would provide the UI, and wouldn’t be tied to the trigger/printer/camera module start/stop system. This module would be loaded at startup and unloaded on shutdown. This would allow the Photo Booth to use different widget toolkits: QT, Curses, Cocoa, WinForms, or whatever else. Under this scheme, the current GTK+ interface would be abstracted into the reference UI Module.

DMP Photo Booth: Release Candidate 1

It’s been a long time coming, but the day is almost here: the day DMP Photo Booth is officially released.

Following last week’s successful stress test, I’ve been doing some last-minute touch-up work. I’ve been preparing my laptop for the big day, and finding and squashing some bugs.

DMP Photo Booth RC1 using my fancy new dark GTK theme

DMP Photo Booth RC1 using my fancy new dark GTK theme

Now things are coming along, and I feel the time has come to proceed to RC1. This means that barring any major new show stoppers, DMP Photo Booth will proceed to version 1.0 on June 22.

You can find the latest release here. On that page you’ll find the latest source for DMP Photo Booth and the reference modules, as well as a pre-compiled version for Debian/AMD64. Just extract the tarball into a folder and double-click the executable and you’re off! It comes pre-configured with sane defaults.

Moving forward, I plan to work on a “GTK Trigger Module”. This will just show a window with a button you can click to trigger the photo session. I understand that not everybody feels like constructing an Arduino thingamabober, and that this is surely the only thing preventing DMP Photo Booth from going viral on a global scale. Hopefully this is done by 1.0, but if not it will likely make it into a version 1.0.1, to be released shortly after 1.0.

DMP Photo Booth: To The Test

It’s been a long year leading up to this, but last week DMP Photo Booth saw its first time out in the wild.

Last weekend my fiancée had her bachelorette party. Since it was No Boys Allowed, I wouldn’t be able to babysit the Photo Booth. Luckily for me the event went off largely without issue.


I spent the week leading up to the event writing documentation. Channeling my past life as an IT professional, I wrote up an HTML page documenting the use of the Photo Booth and some common issues. This documentation will probably get uploaded to either this site or github soon. I need to strip out some stuff specifically relating to my computer first.

After that and a quick walkthrough the night before, it was go time. As the appointed hour arrived, I watched my phone for calls. The good news is that none came. The Photo Booth performed as advertised, with only a few minor difficulties caused by my computer. The only issue with the actual Photo Booth itself that was reported to me is that there is a slight delay between a picture being taken and the trigger counting down. An issue has been opened against this in Github.

The final stretch is here now. The wedding is on the 21st, and the Photo Booth must be complete by then. Honestly, if the day were tomorrow I’d be confident the Photo Booth would work. However, there is always room for polish. There remains bugs to be squashed, documentation to be finalized, and packaging to be done.

DMP Photo Booth: Crunch Time

Over the last few months, I’ve become distracted. As anybody who’s ever committed to one project can probably tell you: it stops being exciting. What was once your pride and joy becomes the daily grind. Things get stale. As was the case with me, I suspect that this happens for most people when development of new features ends and the focus shifts to bug fixes.

I became distracted. My mind began to wander to the next thing, which in my case ended up being Haskell. I began learning Haskell, and it was definitely educational. I learned a lot with Haskell, and I plan to stick with it so that when I list it on my resume, I don’t get destroyed on a whiteboard test. Then came The Great Matrix Affair of 2014; I got overwhelmed at school. I spent so much time studying and doing homework that I couldn’t muster up the motivation to program. Things fell by the wayside, as you can see in my blog post output for February. Luckily for me, that is done, and I have the next two months free to program!

What Remains To Be Done?

It’s been a good 6 – 8 weeks since I’ve really focused on DMP Photo Booth, so the first order of business is the figure out what needs to get done. After doing some brainstorming I’ve settled on a list:

Finish The Trigger

I’ve mostly completed the trigger, but it doesn’t work. The button is soldered wrong, and while it was magically working for a while, it has since stopped. I need to fix the wiring issue, and then drill a hole in the box to put it through. After that and maybe a quick coat of paint it will be complete.

This particular task is due by Friday. I have a series of VIP demos coming up, the first of which is Saturday morning. A few of my cousins are coming in from out of town on Saturday to do wedding stuff, and I want to show it off then. While my cousin Allen is an engineer, and can appreciate a breadboard mockup of what will Totally Become A Real Thing, it certainly won’t be impressive. My cousin Laraine will likely be less amused, but I’m sure I’ll get a pat on the head for my “hard work”. Due to this, it’s important that the trigger be done before then.

Facebook Printer Module

The reference suite of modules was planned to be: a Trigger Module using my Arduino implementation, a Printer Module using CUPS, a Camera Module using LibGPhoto2, and a Lua module for each so that modules can be created using Lua. Of these, only the Lua Printer Module remains to be done. Since creating a Lua module is a trivial task (and not terribly important to be honest), this is a very low priority item.

However, the current Printer Module requires a physical printer. This might not always be ideal, since printers are big and heavy. What if you just want to bring a laptop and a camera and have a photo booth? My fiancée is having just this sort of situation; she wants to use the photo booth at her bachelorette party, but who wants to lug a huge printer to a hotel room? To solve this, I’ve promised her a Facebook Printer Module.

The idea is that when dmp_pm_print() is called, the photo strip will be uploaded to facebook. While I know this sort of thing can be done, I haven’t really researched it much. If it turns out that you have to pay facebook money to get this sort of access, I will find a hosting service that is free. Maybe Photobucket, or Dropbox, or whatever. The important thing is that the photo strips will end up in some central location on the internet so that anybody at the party can download the strip later. Ideally, this central location would be a facebook gallery so people can tag themselvs and be all Web 2.0.

My fiancée’s bachelorette party is in May, so this project isn’t a burning priority. However, this represents the most substantial addition of new functionality remaining to be done, so I plan to work it sooner rather than later. Code will be posted on my Github as it evolves, and like DMP Photo Booth will be available under the GPLv3.

Mac Support

To this point, all my development has been done in Linux. First using Ubuntu, and now using Debian. However, most people don’t use Linux. While Linux is the main target platform for DMP Photo Booth, I have been coding as portably as possible, so it should be little effort to port the application to Mac. Over the next few months, I’ll be making sure it compiles and runs correctly my old Macbook. My Macbook is vintage 2010, as such it is only running Snow Leopard. Therefore if anybody in the audience is a Mac user, and has a current version of OSX, feel free to give it a shot as well and let me know how it goes.

Ideally, my fiancée will bringing the Macbook to her bachelorette party and not my development laptop, therefore this project is due at the same time as the Facebook Printer Module, in May.


Finally, bugs. I need to identify them. I need to squash them. And I need unit tests.

After making a big show about being a good person and doing unit tests, I promptly lost the faith. Soon after implementing those first tests, I made a major change to how I handled errors in my code. Suddenly, all my tests were broken, and I was faced with the choice: rewrite them all, or delete them. After some thought I decided that my tests weren’t that great and that I’d probably change something again and break them all again. So I deleted them.

I’ve got to say, I miss those tests. There has been more than a few times where I’d refactored something and wasn’t sure if it still worked. Sure, it seems to work, but does it really? If I had unit tests in place, I could say with a greater degree of certainty that they do. Plus, “it sounds like a lot of work” is not a good reason not to do something, so it won’t be one for me.

On top of that, I’ll be identifying and squashing bugs the old fashioned way: by trying stuff. I’ve already found a few doozies, and I’m sure I’ll find more. As I find them I’m going to post them on the bug tracker for DMP Photo Booth on Github. I do this for a few reasons: 1) it will provide a public centralized repository of open issues so that I don’t lose or forget about them. 2) I would like others to post bugs here. If I post them here and show that I am fixing them, I feel it will establish confidence that it is looked at and acted upon.

This is due when DMP Photo Booth goes to version 1.0. That is planned to be on June 21, the day of my wedding. DMP Photo Booth will get a good solid night of work as the 80 or so people attending put it through its paces. Assuming all goes to plan with minimal issues, DMP Photo Booth will be declared to be out of Beta. That said, to be truly version 1.0, unit tests must be in place and “all bugs must be fixed”.


Currently, DMP Photo Booth is available in source form only. No end-user ever had to compile Microsoft Office; I don’t feel they should have to compile DMP Photo Booth.

To that end, binary distributions will be available for Linux and Mac when DMP Photo Booth goes to version 1.0.

Got My Work Cut Out For Me

It’s a long list to be sure, but I have 4 months to focus on it. However, I’ve decided that I should spend some time focusing on other things too, so that I don’t burn out. To that end, I plan to spend 1 day per week focusing on learning new technologies, and 1 day per week keeping my old skills sharp.

For new technologies, this means things like learning more Haskell, and other languages or frameworks. Whatever strikes my fancy. For old skills this means practicing with Lua and Java, and maybe even C++ if I’m feeling particularly masochistic that day. This will likely take the form of blog posts on topics relating to these, so stay tuned!

DMP Photo Booth: Underwater

You’ve heard it before: “Premature optimization is the root of all Evil.” Capital Evil. So you go on about your day, arranging the ones and zeros in pretty christmas tree shapes and suddenly the day arrives: your program is slow as molasses. What are you going to do now?

Last monday was that day for me, and I’ve been underwater ever since. “Why is this happening to me?!” I thought. While not prematurely optimizing, I thought I did things right. I have no nested for loops. I’m not using an array when I need a list. Threads aren’t modifying the UI willy-nilly. Why has God forsaken me?

The Symptoms

I first noticed it while working on the printer module. After the program is open for some length of time, my whole computer begins to lag. Not just a little bit either; things completely fall apart. In the space of about 5 minutes, the computer becomes unusably slow. Killing the Photo Booth process doesn’t help; only physically shutting the computer off helps. Of course, the computer is so slow that I can’t use the shutdown option; I have to press The Button.

At this point, I feel some context is in order. I had been trying to figure out how to make my printer print on photo paper. Apparently printing is one of the areas Linux still hasn’t caught up to windows on, so this was proving to be difficult. After printing a few strips, I realized that my low-res photo strips weren’t going to cut it, so I bumped the resolution from 100 pixels wide to 1000. It was then that I noticed things were off.

Ten years of troubleshooting experience kicked in: “what changed?” I thought. The obvious answer was the image size. Clearly my photo strip assembly algorithm was operating at O(n^n^n) or something. What can be done?

Doing It Wrong

I took a look at my assemble strips function. After poking around for a while, I zeroed in on something that had been bugging me for a while. I had been using a function MagickResetImagePage combined with MagickCoalesceImages to composite images over each other. I had decided to use these functions before I knew this operation was called “compositing”, and I had found them in a tutorial on making animated .gif files in MagickWand. At the time, I was never really happy with this implementation, so I went back to the API docs to see if there was a function with “composite” in its name. There was.

MagickCompositeImage is a lot more intuitive to use than MagickResetImagePage. It doesn’t have that Magickal formatting string that MagickResetImagePage uses, it just takes coordinates. Perhaps this was the solution to my problem. I refactored, and recompiled.

Still broke.

Measure, Don’t Guess

That old gem: I’m sure you’ve heard it too. I decided that maybe this was my best course of action. I decided it was time to learn how to use this Valgrind thing all the Cool Kids are talking about these days. For those of you not in the know, Valgrind is a utility that will tell you various things about your program. The most important/most well-known thing that it can do for you is identify memory leaks. Thinking that prehaps I have a memory leak, I installed Valgrind and got to work.

It turns out that GTK has more than a few memory leaks. Allegedly this is due to the fact that it doesn’t cleanup on exit, relying on the OS to free the memory on program termination. While the general consensus is that this is fine, it doesn’t help us. The folks at Gnome are aware of this, and there is even a Wiki page on ways to mitigate this. The cliff’s notes version of that page being: “Just search for ‘definitely lost'”.

Armed with this piece of wisdom, I set off. I ran the Photo Booth in Valgrind, and examined the results. Valgrind actually turned up some memory leaks, which I corrected. Maybe now we’re set!


Breaking Out The Profiler

This is what they usually want you to do when they tell you to Measure. Unfortunately for me, NetBeans’ built-in profiler is only for Java. After some google searching, I found gprof. Gprof is a pretty bare-bones profiler. It does what it says and not much else, which is fine. I hooked my program into the profiler and got to work. The results? Nothing. My two GTK idle functions ran some 7 million times, returning basically immediately each time as expected. Every other function performed as expected.

What now?

Trying The Process Monitor

Having run through Valgrind and GProf, coming out empty-handed, I was at a loss. I got into development because I wanted to fix my own broken code instead of mitigate somebody else’s, and fix it I will. Luckily I have 10 years of sysadmin experience to fall back on. I dusted off my process monitor and got to work.

I fired up DMP Photo Booth, and watched it in the process monitor. I pushed the button. I pushed it again. And again. memory use rose and fell predictably as the strip was assembled, but CPU usage stayed relatively low. Then boom!

I tried again, this time doing literally nothing. Still my computer sputtered and died. I killed the process, but again it was too late.

But wait, isn’t the OS supposed to clean up after me when my process ends? Something fishy is going on.

Have I Mentioned That Threads Are Hard?

Having eliminated all other possibilities, I was forced to consider that I was having a threading issue. “But I was so careful!” I thought. Shortly thereafter I noticed it: I was getting random pthread mutex errors on my console. Clearly I had a threading issue on my hand. Was I spawning extra threads? Was something not releasing its lock? Was I being victimized by gremlins? I set a break point on line one of main() and fired up my debugger. It was time to see just what was being done when nothing was being done.

So, I stepped through my program. Whenever I got to a g_thread_new call, I made sure the thread function was solid. Finally, I got to my g_idle_add calls. I had two of them, one to monitor the status indicators, and one to retrieve photo strip thumbnails. Both of these functions pop from a result from a GAsyncQueue. These Queues are fed by worker threads. I thought back to my profiler output and remembered how often these are called. Looking a few lines down I saw a call to g_timeout_add_seconds. This function is basically adds an idle function, but is only called at most X seconds. Maybe replacing the g_idle_add calls with g_timeout_add_seconds was my answer. I refactored and reran.


Well, crud. “Are these functions even my problem?” I thought. I commented them out, recompiled and reran.


“So, what’s the difference?” I wondered. All three of these functions rely on the same basic behavior: pop from a GAsyncQueue some result placed there by a worker thread. I looked at the three threads: the thread that was working properly calls g_async_queue_ref/unref, and the two that don’t work do not take a reference, instead accessing the static global variable in their module. I refactored all thread functions that access a GAsyncQueue to take a reference and work on their local copy only. I recompiled, reran, and went to bed. 46,100 seconds later, everything was humming along just fine.

Wait, So I Just Had To Increment A Reference Count?

It certainly seemed odd. That’s like your car not starting if the headlights are out. Sure, they’re important, but the car should still start right?

Looking through the source of glib didn’t help. So far as I can tell, all that does is increment the reference count, and return a pointer. I turned to the documentation, which says “… Whenever another thread is creating a new reference of (that is, pointer to) the queue, it has to increase the reference count (using g_async_queue_ref()). Also, before removing this reference, the reference count has to be decreased (using g_async_queue_unref()). …” While not definitive, this certainly seems to indicate that taking a reference is important.

Frankly, I’m not happy about this answer. This is just the sort of magic solution that I hate; it’s fixed, but I’m not sure why. For the time being, I won’t dwell on it. Moving forward, I’ll be sure that my threads take a reference of a GAsyncQueue before calling methods on it. At some point when all of this is said and done, perhaps I’ll investigate this mysterious reference count.

I have taken away from this a new appreciation of just how brittle threads are. Sure, they are powerful, but shooting yourself in the foot with a 50 cal hurts a lot more than with a 9 mm. I’ll have to be more careful.

It was also a good introduction to GProf and Valgrind. Expect blog posts on the usage of each of these tools soon!

DMP Photo Booth: Beta 1

Today has been another milestone for DMP Photo Booth. Today, DMP Photo Booth is feature complete. It’s amazing when after months of work, things can come together all at once. It’s been quite a week for me; in the space of one week, I completed the UI, implemented the photo strip logic, implemented the configuration, and put all the pieces together to make a unified whole.


It almost looks like a professional application too, if I do say so myself. And it all works too. All the buttons do what they say. The indicators at the bottom function. The console queue displays messages as they appear. The photo strip history displays images as they appear. If you wanted to (assuming you have modules of your own ready), you could download it right now and be ready to go. All you need to do is delete a few debugging statements, build it, and you’re off to the races!

The Roadmap

So, what’s next you ask? I plan to implement the modules next. First up is the trigger module. As it stands, a test strip is created when you click start, but with a trigger module ready to go, there would be no need for that. Starting tomorrow I plan to begin building my trigger and implementing the firmware. Expect to see more posts on Learning to Arduino over the next few months as I solder my way to greatness!

DMP Photo Booth: Deep Magick

After working on DMP Photo Booth for a few months, the day came when I needed to implement actual functionality. It’s the day we all dread, but for me this was no longer some looming menace; it was time to stop fiddling around in my framework and actually build on it.

More specifically, it was time to figure out how to turn ~5 images and a background into a photo strip. After checking to make sure GLib and GTK didn’t provide this functionality (GdkPixbuf almost cuts it, but as far as I can tell, it can’t layer images over each other), I turned to google. After some time, I settled on my library: ImageMagick.

ImageMagick bills itself as sort of a command-line PhotoShop. I was suspicious as well, but that’s neither here nor there. The thing about ImageMagick that interested me is its language bindings. ImageMagick provides a library for many languages, including two for C: MagickCore for “Wizard-level developers” and MagickWand for us chumps. Being a chump, I decided to go with MagickWand.

NetBeans configuration

This was relatively straightforward. If you got GTK set up, this should be no problem for you. First, ensure you have the WagickWand development headers. On Ubuntu, this can be accomplished by the following command:

sudo apt-get install libmagickwand5 libmagickwand-dev

On my system, libmagickwand5 was already installed, so I downloaded the headers and got to work.

Next, in NetBeans click Tools->Options, click on the C/C++ tab, and click on Code Assistance. Add the location of the ImageMagick headers (/usr/include/ImageMagick for me). Click OK.

Next, we need to set up our project. Right click your project and click Properties. Click Build->C Compiler. Under Additional Options, add MagickWand to your pkg-config --cflags string. Click Build->Linker and do the same with your pkg-config --libs string.

You are now ready to conjure some magick!

Conjuring Some Magick

Now, let us put on our robes and wizard hats; it’s time to do some magick! Let’s go over a function that will overlay a resized image over a larger background. You can find the actual production photo strip function on Github.

void cast_magick_spell() { MagickWandGenesis(); ...

Before we can do anything, we must initialize MagickWand. “MagickWandGenesis()”, you ask? Of course the function would be called MagickWandGenesis, what kind of silly question is that?

... MagickWand * background_wand = NewMagickWand(); MagickWand * working_wand = NewMagickWand(); MagickWand * final_wand = NULL; ...

The MagickWand * is the main object passed around in a MagickWand application. Working with MagickWand requires some juggling of these pointers, which is why we have 3 of them.

... if (!MagickReadImage(background_wand, "/tmp/background.jpg") { ...

This function reads an image from a file. It returns MagickTrue on success, and MagickFalse on failure. If it returns MagickFalse, we have some clean-up to do…

... ExceptionType exception_error_code; char * exception_message = MagickGetException( background_wand, &exception_error_code); ...

MagickWand makes use of “Exceptions” throughout, so if a function fails, you can most likely pull an exception out of it using MagickGetException. Like any exception, it is up to you what to do with them. Since I’m using GLib, I’ve been wrapping them in a GError and propagating them up. This is actually very easy to do; your error code and message are already there. All you need to do is G_DEFINE_QUARK your error quark and throw it in there. For the purposes of this function, I’m just going to use printf, do some cleanup, and return.

... printf("Oh no! Exception %d: %s\n", exception_error_code, exception_message); MagickRelinquishMemory(exception_message); DestroyMagickWand(background_wand); DestroyMagickWand(working_wand); return; } ...

Nothing particularly shocking here. We printf our message, free the exception_message string using MagickRelinquishMemory, free our MagickWands using DestroyMagickWand, and return.

Assuming we make it past this block, background_wand now contains the background image. Next, we load the foreground image:

... if (!MagickReadImage(working_wand, "/tmp/foreground.jpg") { /* * Exception handling omitted * for brevity. You should still * do it here... */ } if (!MagickResizeImage(working_wand, [WIDTH], [HEIGHT], LanczosFilter, [BLUR])); { /* More error checking... */ } ...

After loading the foreground image, and doing our error checking we attempt to resize the image using MagickResizeImage. This function takes several parameters:

  • MagickWand * working_wand: The MagickWand to operate on
  • size_t [WIDTH]: the width to set the image to
  • size_t [HEIGHT]: the height to set the image to
  • FilterTypes LanczosFilter: the filter to use to resize. There are a list of them in the API documentation. Discussion of these is outside the scope of this post.
  • double [BLUR]: The blur factor to apply. 1.0 is no change. The further 1.0, the blurrier the resulting image.

Like many calls in this library, this function can return MagickTrue or MagickFalse. If it returns MagickFalse, something threw… Next, we adjust the position of the image…

... if (!MagickResetImagePage(working_wand, [RELATIVE_PAGE_SPECIFIER])) { /* * You'd think one of these wizards * could have written a function that * doesn't throw... */ } ...

This function takes some explaining. The second parameter: char * [RELATIVE_PAGE_SPECIFIER] is what’s doing the work here. This is a Magickally formatted string that looks like this: "100x100+15+15!". Let’s examine this as a printf formatting string:


We have 4 integer tokens here. The first token is canvas width, and the second is the canvas height. Note that these will not resize the image, so don’t get any bright ideas about eliminating the previous resize call. The third and fourth tokens are offset from X and Y respectively. These are what we’re really concerned about here. This will allow us to position our foreground image over the background.

Also, don’t forget to check for exceptions!

... MagickSetLastIterator(background_wand); if (!MagickAddImage(background_wand, working_wand)) { /* exceptional! */ } ...

We’re almost there! Now we have to add the images from working_wand to background_wand. These MagickWand objects are lists of images. Like most lists, they have iterators. The call to MagickSetLastIterator sets background_wand’s iterator to the last image in the list. Any images add will be added after this image. next we call MagickAddImage which adds copies of working_wand’s images into background_wand. As before, don’t forget to check for exceptions.

... final_wand=MagickCoalesceImages(background_wand); if (!final_wand) { /* You guessed it! */ } MagickSetLastIterator(final_wand); ...

Now we need to combine all our images into one single image. This is accomplished by calling MagickCoalesceImages which returns a new MagickWand with all of our images combined into 1. The MagickWand used for this call remains unaffected. Obviously, if final_wand == NULL, something threw.

After this is done, we need to set the iterator of final_wand to the Last Iterator, or the next step doesn’t work as advertised…

... if (!MagickWriteImage(final_wand, "/tmp/final.jpg")) { /* wait for it! */ } ...

Shockingly, this function writes your new image to a file. Make sure you check your exceptions.

... DestroyMagickWand(background_wand); DestroyMagickWand(working_wand); DestroyMagickWand(final_wand); MagickWandTerminus(); }

…and were done! Clean up your pointers and call MagickWandTerminus to finalize the MagickWand library. If you browse to /tmp, you should have a newly created final.jpg if all was well!

Would I Do It Again?


ImageMagick was a decently easy to work with library. The documentation wasn’t amazing, but it was tolerable. I’m still a little hazy on the use of the [RELATIVE_PAGE_SPECIFIER], but it’s working so far. One nice thing about the docs is that there are many examples. If the docs don’t explain something, you can look up an example and get an idea of how things work.

The only really big issue I have with this library is how it handles exceptions. This is an issue that I’ve touched on before; it is all too easy to forget to check a return code. I went down that road with DMP Photo Booth, and I’ve since rejected it. I spent an entire day refactoring my program to use GError.

MagickWand has exceptions, they’re just really easy to ignore. While writing this blog post, I caught several instances of unchecked return values in my 1 function that uses MagickWand. Tomorrow I plan to fix this, but it’s time I could be spending on something else.

If GError is Java’s checked exceptions with all it’s order and verbosity, then MagickWand’s exceptions are the Wild Wild West of C++’s unchecked exceptions. If you’ve spent any time working with C++, this has almost certainly bit you; some function doesn’t document if it throws, and your program magickally starts crashing because you didn’t catch something. Bad times are had by all. Sure, you could throw a try/catch block in main() and catch all exceptions to keep from crashing, but at that point your program is a dead man walking. Best to put it out of its misery…

Personally, if I ever write a personal project in C++ again, I’m likely to disable exceptions in my program; they’re just more effort than they’re worth. Maybe I’d even use GError in my C++ app if I could convince myself that I’m not a bad person for using a C library in C++.

Regardless, one blemish on an otherwise pleasant experience is no big deal. Here’s to a successful foray into the land of High Adventure!

%d bloggers like this: